skip to main content


Search for: All records

Creators/Authors contains: "Wark, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract With the advance of particle accelerator and detector technologies, the neutrino physics landscape is rapidly expanding. As neutrino oscillation experiments enter the intensity and precision frontiers, neutrino–nucleus interaction measurements are providing crucial input. MINERvA is an experiment at Fermilab dedicated to the study of neutrino–nucleus interactions in the regime of incident neutrino energies from one to few GeV. The experiment recorded neutrino and antineutrino scattering data with the NuMI beamline from 2009 to 2019 using the Low-Energy and Medium-Energy beams that peak at 3GeV and 6GeV, respectively. This article reviews the broad spectrum of interesting nuclear and particle physics that MINERvA investigations have illuminated. The newfound, detailed knowledge of neutrino interactions with nuclear targets thereby obtained is proving essential to continued progress in the neutrino physics sector. 
    more » « less
  2. null (Ed.)
  3. We have measured new observables based on the final state kinematic imbalances in the mesonless production of νμ + A → μ− + p + X in the MINERνA tracker. Components of the muon-proton momentum imbalances parallel (δpTy) and perpendicular (δpTx) to the momentum transfer in the transverse plane are found to be sensitive to the nuclear effects such as Fermi motion, binding energy, and non-quasielastic (QE) contributions. The QE peak location in δpTy is particularly sensitive to the binding energy. Differential cross sections are compared to predictions from different neutrino interaction models. The Fermi gas models presented in this study cannot simultaneously describe features such as QE peak location, width, and the non-QE events contributing to the signal process. Correcting the genie’s binding energy implementation according to theory causes better agreement with data. Hints of proton left-right asymmetry are observed in δpTx. Better modeling of the binding energy can reduce the bias in neutrino energy reconstruction, and these observables can be applied in current and future experiments to better constrain nuclear effects. 
    more » « less